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Basic Influence Diagrams

Influence is a complicated concept, but in this section we assume it is
simple.

Because we see so many things influencing other things in our daily lives,
we believe that we understand what “influence” means.  Eventually I am 
going to argue that this is not quite true. In fact, one of my chief reasons for
writing this book is to try to explain how influence might be defined, so that
scientists can use the concept in a consistent fashion. Happily, however, we
can reason about influence before we actually understand it at a deep level,
and that’s what we will do in this chapter.

An important part of thinking about influence relationships is bound up
with the idea of an influence diagram. Although I think there are limits
beyond which diagrams are not actually very helpful, these limits are very far
away, and so we can do quite a bit before we run into the ultimate
complexities.

The simplest of all influence diagrams is shown in Figure 2.1. In the
conventions of these diagrams, x and y are the names of two variables. The
idea is that they are measured together over some set of measurement
opportunities. They can both vary from one opportunity to the next, and they
might vary together in some sense.

The arrow that connects them asserts that x influences y. At the
moment, we can take this to mean whatever we want, because this chapter is
based on our intuitive notion of influence. If this seems to be too
ambiguous, I would just point out that a rich and elaborate theory of causal
influence has been constructed and studied for about a generation now, and

y x

Fig. 2.1 In the simplest influence diagram, the
arrow indicates that variable x has an (undefined)
influence on the variable y.
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it has no more to say about what the arrow in Fig. 2.1 means in causal terms
than I do in more general cases. So the slippery ground we are standing on
may be firmer than we think.

There is one very strong way x can influence y, and that is when y is a
function of x. This means that there is some rule from which we can obtain
the value of y knowing only the value of x. We call this an influence because
whenever x takes on some particular value, then y must take on the value
dictated by the function.

A simple example of a functional relationship is y = x2. This is a logical
functional relationship when x is the radius and y the area of a circle. I say it
is “logical” because it follows from the definition of area, using the logical
operations of plane geometry. There is no point in designing experiments to
“test” this functional relationship, because it isalready known to hold. Since
it is a logical relationship, it is also universal. This means that it holds for any
circle, no matter how large or small. Moreover, if we took a particular circle,
and steadily increased its radius, then the successive areas would still have the
same functional relationship to the radii. The reason I am belaboring the
obvious here is because it is precisely our general inability to think about non-
universal relationships that makes our understanding of influence so difficult.

If y is a function of x, and if we change x systematically at different
opportunities, then y will change correspondingly, so that it always satisfies
the function. It does not make any difference how we change x, this
correspondence of changes will always happen. Again, I am pointing out the
obvious with a functional relationship, because a tight binding like this fails
in many other influence relationships.

We now have at least two reasons to suspect that functional relationships
like Fig. 2.1 will not happen very often. Influences are seldom universal, and
in general how one changes x has an impact on y. Part of the reason for
developing a theory of influence is to incorporate these two facts.

Another way that x can influence y happens when y is a chance variable.
This means that y has a probability distribution. At each measurement
opportunity, instead of being a determined quantity, there is variability in y
that is in some sense unaccounted for. It is this excess variability that leads
us to say that y has a probability distribution.

For an example, let x denote the measured radius of a circle. Suppose
the measuring device that we use either gives the radius exactly (with
probability 0.5), the radius plus 0.001 (with probability 0.3), or the radius
minus 0.001 (with probability 0.2). The logical functional relationship for the
area y is then y = (x-)2. Here is the error made by the measuring
instrument, so that x-is the true radius. If we make observations under
these circumstances, then we will not see y =x2. Instead, we will see y = x2
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with probability 0.5, y = (x-0.001)2 with probability 0.3, and y =
(x+0.001)2 with probability 0.2.

In this example, y is a function of (x, ). But because we cannot see ,
we will not see a universal relationship between y and x. Moreover, it is
possible that if we change x very carefully, then it will not disturb the
measurement process, but if we change x sloppily, the measurement process
will give different probabilities to . I will eventually argue that things like
this happen all the time, and cause considerable confusion. For the moment,
however, I just want to point out that when this happens, then how one
changes x has an impact on y. This example suggests that probabilistic
influence might be a good deal more useful than functional influence.

Beyond functional and probabilistic influence, there is the notion of
causal influence. It would be a great exaggeration to say that we have settled
on good definitions of causal influence, but this does not seem to keep us
from using the concept anyway. The reason is that we can imagine that
causal influence, whatever it might be, has to behave according to certain
rules. The rules alone can therefore give us some insight about causation.

2.1 Suppose that over five measurement opportunities, we see the
following results:

Opportunity x y
1 0 -1
2 3 2
3 1 -1
4 3 3
5 2 2

Is y a function of x? Is x a function of y? Can you state a general test
whether one variable is a function of another?

Several variables can influence another variable.

A more general notion of influence than Fig. 2.1 is that y might be a
function of x and some other variables.  Let z stand for a list of the “other 
variables”.  We then say that y is a function of (x,z).  Of course, this means 
that when we know x and all the values of the variables in z, then we know y.
Some would now argue that Fig. 2.1 is too simple, and that the other
variables should be shown. Others would argue that it is alright to leave
some variables out of an influence diagram. Both views are partly correct
and partly incorrect.
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Fig. 2.2 shows a situation in which y is influenced by three variables, x,z,
and w. An example would be when y = (x+z)w. Another example would be
y = x ln(z/w). What is important about these is that in general all three
variables are necessary to find the value of y. It is not possible to get y with
only two of them. A probability example would be y = zx + w + , where 
is a chance variable (perhaps due to a measurement process). Here again y is
a function of (x,z,w,), but because we cannot see we interpret the
relationship between y and x, z, and w in probability terms.

It is possible to take a strict view of Fig 2.2, which says that all of the
variables influencing y are shown (except perhaps for unobservable
disturbances, like ). In this case the diagram makes a powerful statement,
that the variables influencing y, and only those variables, are shown. In this
case the diagram is complete. We would then say that Fig. 2.1 is incomplete.

This leaves us with an interesting dilemma, which we will have to work
rather hard to solve. If Fig. 2.2 is the complete influence picture, then is Fig.
2.1 still a valid influence diagram? If we say yes, then we have to allow
incomplete diagrams. If we say no, then we are in the absurd position of
saying that although x is a part of a set of variables that influence y, it does
not influence y itself.

I am going to maintain that influence diagrams provide us with useful
tools for discussing and thinking about scientific relationships, but I am not
going to maintain that they are perfect. This means that a diagram will
depend on “something else”, either in terms of formulas, or concepts, that 
may be difficult to depict in the diagram itself. In some cases, we will find

y x

z

w

Fig 2.2. The variables x, z, and w all influence y, but
the diagram does not show how.
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that these “something elses” can be incorporated by adding decorations to 
the diagram, but in other cases this will be virtually impossible.

One such decorational device is to put bubbles around variables that can
be observed, and to leave the bubble out when a variable cannot be
observed. For example, in Fig. 2.3 the implication is that y is a function of
(x,z,w,), and so the diagram is complete. Because has no bubble, we know
that it cannot be observed. This diagram does not show, however, whether 
is a deterministic or chance variable. We could choose to enclose chance
variables with rectangles, or diamond shapes, to distinguish them from
ordinary variables, which would still be enclosed in bubbles. I am not so
much interested in developing a set of conventions for this sort of thing as I
am in opening up the possibilities.

2.2 In a circle with radius r, circumference c, and area A, it is always true
that A = cr/2. Would you say that A is a function of (c,r)? Can you give a
test whether one variable is a function of several others?

Influences can have strengths, and in this case additive models are
useful, though not very general.

An influence diagram like Fig. 2.3 shows which variables influence y, but it
says nothing about how strongly each of them influences y. It would be very
nice to be able to place measures of strength of influence onto the arrows in
the diagram, because it is the arrows that indicate the influences. In general,
it is rather hard to do this. There is, however, one special case in which it is

y x

z

w



Fig 2.3. Unobservable variables can be indicated by
leaving out the bubble.
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easy–when y is an additive function of its influences. An example would be
y = 2.3x + 0.4z –3.0w + . Fig. 2.4 shows how we would decorate the
diagram with the coefficients in this additive relationship. Note that there is
no influence strength on the arrow from . This is again a sort of
convention, that when no strength is indicated for a unobserved variable, the
strength is assumed to be equal to 1. This may seem idiosyncratic, but there
is actually a good reason for it, as we will see in a minute.

When we attach values to the arrows in an additive functional
relationship, we need to keep in mind that these are expressed in terms of the
units of measurement for all of the variables. For example, in Fig. 2.4
suppose that x were measured in inches. Now what if we ship the diagram
off to our European colleagues, who would want x to be measured in
centimeters? From our perspective, they want to think in terms of 2.54x, not
in terms of x (inches). The fundamental point for doing the conversion is
that 2.3x = (2.3/2.54)(2.54x). Since the latter term in parentheses is what the
Europeans mean by “x”, the European strength will be 2.3/2.54 = 0.91.

The strength measure for x is also affected by the units in which y is
measured. Continuing the preceding example, suppose that we have
measured y in pounds. Again, the Europeans would like to see y measured in
kilograms. After we do the centimeter conversion for x, our additive
relationship is y = 0.91x + 0.4z –3.0w + . If we divide both sides of this
equation by 2.2, then the left side will have been converted to kilograms, as
the Europeans want. On the right side, 0.91 will become 0.41, 0.4 will
become 0.18, and -3.0 will be come -1.36. Thus, changing the units for x, z,

2.3

0.4

-3.0

y x

z

w



Fig. 2.4. In an additive functional relationship, the strengths of the
influences of the variables can be associated with the arrows.
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or w only changes the corresponding strength coefficient, but changing the
units for y changes all three coefficients.

It is interesting here that we would not change the coefficient for . The
reason is that since is not measured, it is ambiguous what units it would be
measured in, and so we can simply carry the convention (coefficient of
unmeasured variables are 1) from our equation to the European equation.

There is debate about whether one should somehow standardize units in
additive influence diagrams, so they are free of the units used. This is usually
done by expressing each chance variable in standard deviation units (that is,
dividing it by its standard deviation) As usual, there are good arguments on
both sides, and we will eventually examine them. For the moment, the
important point is that in order to interpret influence strengths, one must
bear in mind the units in which the variables are measured.

Additive models of this sort are very, very widely used. This is especially
true in the social sciences, but it is often true elsewhere. There are several
arguments in favor of this. First, influence diagrams faithfully represent the
corresponding relationships when they are additive. That is, because additive
relationships are so simple, we do not need to add excessive decoration to
the influence diagrams that represent them. By simply looking at the
coefficients next to the arrows in the diagram, we can immediately deduce
the exact additive relationship. Secondly, in most practical cases the variables
in an influence diagram are treated as if they were chance variables. This
means that departures from exact functional relationships (additive or not)
are regarded as being due to unobserved chance influences. Very often the
strengths of the chance influences like dwarf the strengths of the observed-
variable influences. In these cases, there is hard to find evidence favoring
anything other than a simple additive relationship. Since additive
relationships are easy to interpret, in the absence of compelling evidence for
other relationships, they seem to be preferred. Note that this is a cultural
argument, not a scientific argument. Thirdly, it is much easier to produce
computer programs to fit data with additive models than it is with more
general models. This is, of course, an argument from convenience, not from
science.

We can note that all of the reasons for using additive functional
relationships are advanced in order to make the life of the scientist less
intellectually demanding. Non-additive relationships seem to abound in
nature, in the sense that whenever sufficiently precise data can be obtained,
non-additivity emerges. Perhaps the best attitude to take toward additive
relationships is that they might give first-order approximations to the actual
functional relationships, and that by examining and using them we might be
led to better second-order approximations. Later on we will see many non-
additive approaches that can be taken as second-order or subsequent
approximations.
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2.3 Suppose that x and z are variables that take values between 0 and 1,
and that y = x + z –xz. Under what conditions will it be reasonable to
approximate this by saying that y is an additive function of x and z?

Some influence pathways are direct, and some are indirect.

In Fig. 2.5, we see again the simplest influence relationship, that x
influences y. The additional part of this figure shows that z influences x.
The point that I want to make here is that there is a convention in influence
diagrams, that an arrow between two variables stands for a direct influence.
This can only be understood, however, if one has an example of an influence
that is not direct, and that is what Fig. 2.5 provides. The idea is that z
influences x, and this in turn influences y, because x influences y. Thus z has
an influence on y due to its influence on x. This is called an indirect influence.

Here is a practical example of some importance. Let us suppose that y is
some measure of a health risk (like high blood pressure, high serum
cholesterol level, or lung damage). Further suppose that x measures some
action that a person can take to lower the value of their risk variable (y). In
the case of lung damage, x could be quitting smoking cigarettes. In case of
blood pressure or cholesterol, x could be taking on an exercise program, or it
could be taking one of the several drugs that influence these variables.
Finally, let z denote an indicator of whether a person enters a health-
improvement program of some kind (z=0 means they don’t, z=1 means they 
do). If Fig. 2.5 correctly captures the influences in this case, then it says that
z (the health program) influences y (the health risk) only because it influences
x (a specific behavior), and this happens because x directly influences y.

In a case like this we say that x is a mediator variable. It mediates the
influence of z on y. It is the medium by which z has its influence. It seems
to be the case that when people claim that z influences y, but there is no
obvious mediator variable, they have trouble believing that the influence is
causal, but once a mediator variable is produced, they have much less
problem with the causation issue. Somehow the existence of a mediator
explains why z influences y. On the one hand, this is a psychological issue,
but on the other, it seems as though much of science progresses through
finding mediator variables, so perhaps our psychology is leading us in the
right direction.
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A study that is designed to find mediator variables is called a mechanistic
study. The idea behind the term is that x measures a mechanism through
which z has its causal effect.  What constitutes a “mechanism” depends on 
details of the scientific area under study, and since it is not general, I will not
develop this idea very much in this section. But I do want to point out that it
is very important.

In the case where influences are additive, there is an interesting
computation that one can make in Fig. 2.5. If measures the strength of x
influencing y, and measures the strength of z influencing x, then 
measures the strength of z influencing y. This is obviously an attractive
result, because it simplifies the thinking and exposition of the indirect effect.
As I will continue to argue, however, nature generally does not behave
additively, and in particular nature has not arranged things to be attractive
from our point of view. Let us always remember that additive models are
often only first-order approximations.

Another situation that can arise is shown in Fig 2.6. In this figure we
recognize that z has a direct influence on x, which has a direct influence on y,
so that z has an indirect influence on y. But the arrow that connects z to y
asserts that there is also a direct influence of z on y.

This diagram shows that we need to think in terms of influence pathways.
There is one pathway from z to x to y, the indirect pathway. But the diagram
also asserts that there is another pathway, a direct one through which z
influences y. It is important to see that Fig. 2.6 is fundamentally different
from Fig. 2.5.
Let’s go back to the health-risk example I gave for Fig. 2.5. If Fig. 2.6

were valid, then this would say that putting someone on a health program (z)
would have a direct effect on their health-risk (y), not mediated by their
specific behavior (x).  In the case where x was “quitting smoking”, the health 
program (z) might involve not only specific quitting messages and strategies,

y x z

Fig. 2.5. x has a direct influence on y, but z has only an
indirect influence on y, acting through x
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but also more general information about healthy life-styles. It might, perhaps
somewhat inadvertently, present information about the effect of exercise on
health. This information might cause some people to start regular exercise
programs, quite separately from whether they quit smoking or not. The
health intervention (z) would then have had a direct effect on health risk (y)
not mediated by quitting smoking (x), and this explains the additional arrow
in Fig 2.6.

There is an enormous difference between Figures 2.5 and 2.6, and so it is
surprising how seldom this shows up in practical research. To see the
importance, imagine that we are in the “quit smoking” health program 
situation. If Fig 2.6 is right, but the researchers use Fig 2.5 as a guide for
their analysis, then they will probably overestimate the effect of their health
program due to quitting smoking, because some (maybe most) of the
strength of influence might be through the “increase exercise” pathway.  On 
the other hand, suppose that Fig 2.5 is valid, but Fig 2.6 is used to direct the
analysis. In this case, the researchers will find that the direct influence of z
on y is weak or nonexistent, and make the correct interpretation, that their
health program has its effect through quitting smoking.

The lesson here seems to be that if one uses an influence diagram that is
too simple to guide one’s data analysis, then one may produce biased results.  
But if one uses an influence diagram that is more complex than it needs to be
to describe reality, statistical tests will lead to deletion of extraneous influence
arrows. Although I think this lesson is generally true, there are some
substantial difficulties in using it in the naïve way that I have done here. We
will attack this problem eventually.

One of the important lessons of this section is that it may make no sense
to use adjectives like “direct influence” or “indirect influence” for individual 
variables.  The term “direct” applies to a pathway, and similarly for 

y x

z

Fig. 2.6. A variable can have both direct and indirect
influences.
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“indirect”.  Thus, in Fig. 2.6 there are two influence pathways from z to y,
one indirect acting through x, and one direct. A substantial amount of
confusion in many scientific literatures has resulted from not making this
distinction: direct/indirect pertains to pathways, not variables.

In a final comment on Fig 2.6, note that in my “quit smoking”example,
the “direct” influence pathway from z to y was actually mediated by w = 
“adopting an exercise program”, which did not appear in the diagram. This
shows one of the caveats about the direct/indirect distinction: it is dependent
on which variables we are willing to think about or measure. By leaving
some variables out, we might promote indirect influences to direct
influences. Perhaps every direct influence can be converted to an indirect
influence, by a sufficiently diligent search for mediating variables. Thus,
“direct” and “indirect” are relative terms, which depend on the level of detail 
(that is, variables) that can be measured in a particular study.

2.4 In the case of a circle of radius r, circumference c, and area A,
certainly r influences c which influences A. Is there a direct influence of r on
A that is not mediated by c?

2.5 Imagine a rectangle with sides x and z, diagonal 22 zxd  , and
area A. It is clear that x influences d, and that d influences A. Is there a
direct influence of x on A that is not mediated by d?

The concept of a common influence is central to evaluating influence
relationships.

Look back at Fig. 2.1, which postulates a simple direct influence of x on
y. If one collects data on x and y at different measurement opportunities,
and one simply relates them in some statistical way, then ultimately the
justification for this kind of analysis is that Fig. 2.1 is valid as an influence
diagram. Are there ways that this can go wrong?
Fig. 2.7 shows that the answer is a redounding and disconcerting “yes”.  

On both sides of the figure, we see that z influences both x and y. In this
sense, z is a common influence of x and y. On the left side, we see a situation in
which, despite z’s influence on x and y, it is still true that x influences y.  On 
the right side we see a different scenario, in which x does not directly
influence y. The distinction between these two situations has created a lot of
controversy.
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The fundamental problem is this. If the right panel in Fig.2.7 is valid,
then ignoring z, Fig 2.1 could still be valid. So the story is this. In the right
panel of Fig 2.7, x does not directly influence y. But z influences both x and
y, so it is a common influence. Since we do not measure (or perhaps cannot
measure) z, we revert to Fig. 2.1 for understanding influence. The point is
that we may see an influence in Fig. 2.1, but it is not because x influences y, it
is because they have a common influence, z.

This is one of the fundamental problems and controversies throughout
all of science. If you can observe a relationship (functional, or more usually
probabilistic) between x and y, then does this mean that x influences y?
From the argument of the preceding paragraph, the answer is “potentially 
no”.  There may be another variable (z) that is a common influence of x and 
y, and when we exclude it (usually because we cannot measure it), then we
see a statistical relationship between x and y, which is not indicative of an
influence relationship.

In biomedicine this issue comes up most prominently in epidemiologic
studies. Epidemiologists try to associate disease variables with other
variables that might cause the disease. Their focus is on association, not
influence, and not causation.  When they find a “risk factor” (a potential 
cause variable) related to a “disease factor” (a variable measuring disease), 
they report it. They then acknowledge that there might have been a common
influence, which would mean that the association was not an influence
relationship, no less a causal relationship. Somehow in epidemiology it has
come to be accepted that when the researchers confess the sin of not
identifying and measuring the common influences, they are exonerated and
their research is published nonetheless. (As an aside, we may note that
epidemioligists use the term confounder for what I call a common influence.)

y x

z

y x

z

Fig. 2.7. A common influence (z) can happen in two different situations, where x
influences y, and when it doesn’t.
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Almost all of the panic in the biomedical literature is that one might
conclude that Fig. 2.1 is valid when in fact the right panel of Fig. 2.7 might
actually be the real situation (for some hypothetical z). But this is not the
only disturbing scenario. It is quite possible for the left panel of Fig. 2.7 to
be valid, and when one just looks for a statistical relationship between x and
y (ignoring z), none is to be found. In this case, the effect of the common
cause is not to produce an artificial relationship between x and y, but to
remove an actual relationship. This is no less possible than the case in which
z produces an artificial relationship, but for some cultural reason scientists
seem to be more wary of the production than the destruction of influence
relationships due to common influences.

2.6 Again consider a rectangle with sides x and z, diagonal d, and area A.
Consider an influence diagram that says that d is a common influence of A
and x. Does x have a direct influence on A in this diagram?

One variable can modulate the influence of another variable.

I have suggested that influence diagrams can indicate influence
relationships, but that sometimes the strength of the influence relationship is
also important. This opens the possibility that one variable might influence
the influential strength of another variable.

In Fig. 2.8, as usual x influences y. The strength of this influence is not
shown, at least not overtly. The diagram says that z has an influence on the
strength of the influence of x on y. In this case, z is called a modulator, and it
is said to modulate the influence of x on y.

If, for convenience, we go back to additive models, then an example
functional relationship that includes modulation is y =(1-0.5z)x. Here, the
strength of x’s influence on y is (1-0.5z), showing explicitly that the value of z
determines how strongly x influences y.

Modulation relationships can be extremely important in science, because
ignoring them can lead to massive confusion. In the example, note that if
z>2 then x influences y positively, while if z<2 then x influences y negatively,
and if z=2 then x does not influence y at all. If one conducts experiments in
which z is unobserved, then the results will consist of some cases where x
influences y, some cases where x inversely influences y, and some cases
where x does not influence y. What kind of influence relationship one
concludes from data like these will depend on the distribution of values of
the (unobserved) z value in the experiment. It is to be expected in cases like
this, that different researchers doing different studies, with different
distributions of z, will report different results. It is the failure to report
consistent results across studies that makes conventional researchers so
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nervous about what to believe, and then one might look to an explanation in
terms of modulators.

One would think that these obvious facts would lead researchers to
search for modulating variables. Oddly, this is sometimes true, but often
false. In biochemical experiments, one often sees that potential modulatory
variables are controlled, which means that they are fixed during experiments, or
only permitted to vary in ways that the researchers determine. Biochemical
scientists do not, however, generally admit that there may have been
modulatory variables that they have not controlled, and failed to measure.
Other biomedical scientists are often even more glaringly cavalier about
modulatory variables. Overwhelmingly, the attitude is to ignore potential
modulators. Almost always this attitude comes from statistical
considerations. It is harder to find a statistically significant interaction, which
would mean a modulation influence, than it is to find a statistically significant
direct influence. In other words, statistical inference about modulatory
influence is generally weaker than inference about direct influence. The
decision to focus on the latter is, therefore, not driven by considerations of
science, but by biases among scientists that are driven by statistical issues.

Even a glancing acquaintance with biology is enough to convince one
that modulatory relationships happen very often. Because more general
systems often mimic biological systems, we are justified in expecting
modulatory influences to occur frequently. This suggests that Fig. 2.8 needs
to be taken very seriously.

y x

z

Fig. 2.8. One variable can modulate the relationship
between two others.
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 2.7. Produce and explain an influence diagram showing how vaccination
works.
 2.8 Suppose a researcher sees patients with favorable or unfavorable
prognoses. Suppose he puts patients with more favorable prognoses on a
new drug, and then compares the subsequent course of their disease with the
remainder of patients who didn’t get the drug. Produce and explain an
influence diagram for this situation.
 2.9 A physician tries to prevent heart disease in a patient by prescribing a
cholesterol-lowering drug, but unfortunately it has the side effect of
increasing the patient’s blood pressure.  Produce and explain the 
corresponding influence diagram.
 2.10 Older people who become depressed often reduce their physical
activity and stop taking certain medications, both of which can reduce the
density of their bones, leading to fractures. Produce and explain the
appropriate influence diagram.
 2.11. Produce and explain a general influence diagram for the placebo
effect.


