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ABSTRACT

Clinical and other studies that evaluate the effect of a treatment relative to a
control often focus on estimating a mean treatment effect; however, the mean
treatment effect may be misleading when the effect of the treatment varies
widely across subjects. Methods are proposed to evaluate individual treatment
heterogeneity (i.e., subject-treatment interaction) and its consequences in clini-
cal experiments. The method of maximum likelihood is used to derive estima-
tors and their properties. A bootstrap procedure that requires fewer assump-
tions is also presented as a small sample alternative to the maximum likelihood
approach. It is shown that estimators for subject-treatment interaction are sen-
sitive to an inestimable correlation parameter. This sensitivity is illustrated
using some example data sets and using graphical plots. The practical conse-
quence of subject-treatment interaction is that a proportion of the population
may be not be responding to the treatment as indicated by the average treat-
ment effect. Results obtained from the methods reported here can alert the
practitioner to the possibility that individual treatment effects vary widely in
the population and help to assess the potential consequences of this variation.
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Applications of the proposed procedures to clinical decision making, pharma-
cogenetic studies, and other contexts are discussed.

Key Words: Additivity; Clinical trials; Causation; Potential response;
Treatment heterogeneity

1. INTRODUCTION

A common experimental design used in clinical studies to compare two treat-
ments is the two-sample completely randomized design. In such a setting, n1 sub-
jects are randomly selected to receive treatment 1 (T1) and another n2 subjects
receive treatment 2 (T2). We will assume that T1 � T is a new test treatment, and
T2 � C is a standard or control treatment. Individual subject scores on a dependent
variable (DV ) are observed at some point in time. These DV could represent a
change from a pretreatment baseline measurement. The two treatments are often
compared by estimating an average difference in DV between T and C with respect
to some population of interest (hereafter referred to as an ‘‘average treatment
effect’’).

In addition to an average treatment effect, a measure of the variability in
the effect of T with respect to C could help clinicians compare treatments on
‘‘individuals’’ in a study. If individual treatment variation is large with respect
to the mean, the mean treatment effect could be positive and yet a nonnegligible
proportion of the population could be experiencing no effect or even a negative
effect. This measure of individual treatment heterogeneity or subject-treatment
interaction is often overlooked when analyzing clinical results. If a measure was
available, clinicians could be guided to identify a subset of the population that
does not respond to treatments in a manner suggested by the estimated average
treatment effect. This subset may be marked by a particular covariate that was
not identified in the original design. It has been remarked (1; page 73), ‘‘. . . if
substantial variations in treatment effect from subject to subject do occur, one’s
understanding of the experimental situation will be very incomplete until the basis
of this variation is discovered,’’ and it has recently been proposed that, as a stan-
dard, inference on the average treatment effect be supplemented with inference
about the variation in treatment effects (2; page 1473).

Statements about the likely variability of treatment effects can be important
for several reasons. From a clinical perspective, many patients and healthcare
providers might like to know not only the average effect, but also the probability
of a worsening of effect. In some situations, a treatment with a lesser benefit on
average might be preferred to a treatment having a superior average effect but
also having a greater risk of producing a deleterious effect. Even if the effect is
not plausibly deleterious, in some cases a small effect that is a ‘‘sure thing’’ may
be preferred to a large average, but less dependable, effect.

There may also be forensic applications of this information. For example,
a patient may experience some exacerbation in symptomology after receiving
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treatment and claim damages. In such a case, the probability of the treatment in
question ‘‘causing’’ exacerbation would seem to be critical information. More-
over, if it were possible to estimate that probability and provide that estimate to
the patient prior to initiating treatment and such information were not provided, it
might put the providers or manufacturer in a vulnerable situation, namely liability.

Finally, there may be important research applications to these techniques.
For example, pharmacogenomics is now a popular topic for investigation (3). Re-
searchers are attempting to identify genetic polymorphisms that are predictive
of especially good or poor drug responses. Such searches often proceed after an
investigator has observed some degree of variability in the change that occurs
after the application of some treatment. For example, after receiving clozapine,
an antipsychotic agent, patients’ weights increase on average (4), but there is vari-
ability in the degree of weight change with some people gaining weight and some
people losing weight. Some investigators have assumed that variability in change
is equivalent to variability in response and examined the association of genetic
polymorphisms with the degree of weight change among patients taking clozapine
(5). However, this begs the question of whether there is any variability in response
at all. The methods illustrated herein could help investigators determine the extent
to which there is true variability in response before they invest great efforts in
trying to determine the causes of that putative variation.

There is a fundamental issue one encounters when attempting to estimate
the variation in treatment effects (i.e., subject-treatment interaction). This issue is
related to what Holland (6) called ‘‘the fundamental problem of causal inference,’’
which states that at a particular moment in time and for a given subject, only a
measurement of the DV given T or C can be observed but not both. So an individ-
ual effect of T, with respect to C, cannot be observed. Gadbury and Iyer (7) pro-
duced estimated bounds for subject-treatment interaction in a situation where a
two sample design is being used and a covariate is available. They also showed,
under normal distribution assumptions, that bounds for the proportion of the popu-
lation experiencing an unfavorable treatment effect could be estimated. Their re-
sults depended on large sample properties of maximum likelihood estimates
(MLEs).

In this paper, we extend the results of Gadbury and Iyer by assessing the
‘‘sensitivity’’ of an estimated subject-treatment interaction term to a inestimable
correlation parameter. We present the technique without using covariate informa-
tion and then with the use of a covariate. The results here also make use of asymp-
totic maximum likelihood theory and are most suitable for large samples. How-
ever, we also illustrate the bootstrap for use when the sample size is small or
distributional properties of the data are not known. We conclude with a discussion.

2. DEFINING SUBJECT-TREATMENT INTERACTION

Subject-treatment interaction is present in an experimental study when the
true effect of a treatment varies across subjects in a population. Consider a set of
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two potential observations (8), (Xi, Yi), for an individual subject ui in an investiga-
tion to compare the effect of a treatment T with respect to a control treatment C.
The variable Xi is the value of the outcome on subject ui when exposed to treatment
T, and the variable Yi is the value if exposed to treatment C. The two values are
imagined to be measured at the same moment in time. In practice, only the value
corresponding to the treatment actually assigned can be observed for a particular
subject. Nevertheless, the two ‘‘potential values’’ help to conceptualize a true
effect of treatment T with respect to treatment C on subject ui that we define to
be Di � Xi � Yi.

Suppose that potential observations (Xi, Yi), i � 1, 2, . . . , are independent
and identically distributed (i.i.d.) random variables from a bivariate distribution
with mean (µX, µY)t and variance matrix

� σ 2
X ρXYσXσY

ρXYσXσY σ 2
Y � (1)

Parameters of this bivariate distribution, with the exception of ρXY, can be esti-
mated from the marginal distributions of X and of Y. The variability of individual
treatment effects will be a function of ρXY. We assume that there is no interference
between subjects (9; page 19), that is, a subject’s response to a treatment does
not depend on the treatment assignment outcome for other subjects in the study.
The true treatment effects, Di, have mean µD � µX � µY and variance σ 2

D �
σ 2

X � σ 2
Y � 2σXσYρXY. Estimating µD is straightforward in common randomized

experiments but little, if any, attention is given to evaluating σ 2
D. Subject-treatment

interaction is present in the population under study when σ 2
D � 0. When σD is

large relative to µD, the mean treatment effect may not provide an adequate de-
scription of the treatment’s effect on individual subjects in the population. Without
loss of generality, suppose that µD � τ is a beneficial treatment effect where τ is
some desired threshold effect (hereafter we assume τ � 0, again without loss of
generality). The mean, µD, may be positive indicating that, on average, the treat-
ment has a beneficial effect, and yet there may be a nonnegligible proportion,
which we denote as P� � Pr(D � 0), of the population that experiences an effect
that is not beneficial (hereafter referred to as an unfavorable effect). A knowledge
of σD is required to address this concern adequately. It can be shown that σ 2

D �
(σX � σY)2 � 2 σXσY(1 � ρXY), so σD � 0 requires that both σX � σY and ρXY

� 1. The key issue in estimating σ 2
D is that the correlation parameter, ρXY, is not

identifiable in observed data since for each subject, either X or Y is observed but
not both. Earlier results in the literature on this topic deal with testing for the
presence of a subject-treatment interaction (i.e., nonadditivity) by testing for its
observable consequences (10,11) or with finding transformations of the data so
that subject-treatment additivity appears to hold on the transformed scale (12).
However, if a ‘‘suitable’’ transformation is found, the focus then reverts to the
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average treatment effect on the transformed scale. This approach has at least two
issues: (i) there is no information in the data for testing for unobservable conse-
quences of subject-treatment interaction so that such interaction cannot be ruled
out; and (ii) if a subset of the population experiences an unfavorable treatment
effect then this subset of the population will experience this effect whether or not
the data are transformed. We illustrate these ideas in the following data example
(13; page 112).

Example 1

Table 1 gives the alcohol intake of 23 ‘‘alcohol dependent’’ males during
a one-year period following discharge from an inpatient alcohol treatment center.
Eleven individuals were randomly chosen to participate in a social skills training
program (SST) plus a traditional treatment program (i.e., treatment T). The re-
maining 12 individuals participated in only the traditional treatment program and
were thus labeled the control group (i.e., treatment C ). The experiment was con-
ducted using a two-sample completely randomized design. We have assumed that
the data values, measured in centiliters (cl), accurately represent the alcohol intake
for the one-year period and that treatment compliance was not an issue.

A point estimate of the difference in mean alcohol intake between the two
groups, µD, is equal to �456 cl, and a two-sample t-distribution based 95% confi-
dence interval for this mean difference is (�694 cl, �218 cl). These results pro-
vide some evidence in favor of the SST program in reducing average alcohol
consumption in alcohol-dependent males.

Still, we have not considered an important aspect of the treatment’s effect
on the individuals in the study. Observe that subject 1 in the SST group had a
one-year alcohol intake of 874 cl. We cannot know what that particular subject’s

Table 1. Alcohol Intake for 1 Year (Centiliter of
Pure Alcohol, cl)

Subject SST Subject Control

1 874 12 1,042
2 389 13 1,617
3 612 14 1,180
4 798 15 973
5 1,152 16 1,552
6 893 17 1,251
7 541 18 1,151
8 741 19 1,511
9 1,064 20 728

10 862 21 1,079
11 213 22 951

23 1,319
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alcohol intake would have been if he had been assigned to the control group in-
stead, and similarly for all subjects in the study. The true treatment effect, Di i
� 1, . . . , 23, cannot be observed. For this reason it is not possible to directly
estimate σD (or P�) from observable data. However, it is possible to assess the
sensitivity of an estimate to varying ρXY.

3. EVALUATING �D AND P� � Pr(D � 0)

Suppose that potential observations (X, Y ) are bivariate normal (possibly
after a suitable transformation) with mean vector (µX, µY)t and covariance matrix
given by Eq. (1). Let Xi, i � l, . . . , n1, denote the observed values for the n1

subjects assigned to the treatment group in a two sample completely randomized
design. Likewise, let Yj, j � 1, . . . , n2, denote the observed values for the n2

subjects assigned to the control group. The likelihood function of observed data
is of the form, Π n1

i�1 f(xi)Π n2
j�1 f(yj).

For a given value of ρXY, the maximum likelihood estimator (MLE) for
σ 2

D is given by,

σ̂ 2
D � σ̂2

X � σ̂ 2
Y � 2σ̂Xσ̂YρXY (2)

where

σ̂ 2
X � s 2

X � (1/n1)�
n1

i�1

(xi � x)2

(3)

σ̂ 2
Y � s 2

Y � (1/n2)�
n2

j�1

(yj � y)2

and x and y are the arithmetic sample means of observed X and Y, respectively.
Furthermore, the large sample distribution of σ̂ 2

D is approximately normal with
mean σ 2

D and variance,

Var(σ̂ 2
D) � 2�σ 2

X

n1

(σX � ρXYσY)2 �
σ 2

Y

n2

(σY � ρXYσX)2� (4)

The derivation of Eq. (4) is outlined in the Appendix. From this result one can
assess the sensitivity of σ̂D, and corresponding large sample confidence bands for
σD, to varying values of ρXY between �1 and 1.

Assuming, again without loss of generality, that µD � 0, then the probability
of an unfavorable treatment effect is given by

P� � Φ(�µD/σD)

where Φ(a) is the cumulative standard normal distribution function evaluated at
a. The MLE of µD is µ̂D � x � y, so for a given value of ρXY, the maximum
likelihood estimator for P� is
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P̂� � Φ(�µ̂D/σ̂D)

where σ̂D is the square root of σ̂ 2
D, given in Eq. (2). The large sample distribution

of P̂� is approximately normal with mean P� and variance,

Var(P̂�) �
(φ(�µD/σD))2

σ 2
D

�Var(µ̂D) �
µ 2

D Var(σ̂ 2
D)

4σ 4
D

� (5)

where φ(a) is the standard normal density evaluated at a, Var(σ̂ 2
D) is given in Eq.

(4), and Var(µ̂D) � σ 2
X/n1 � σ 2

Y/n2 [see Appendix for the derivation of Eq. (5)].

A Return to Example 1

Though the Example 1 data came from a small data set, we use it to illustrate
the results from above. Inference on the average treatment effect suggested that
the SST treatment was beneficial. The following results give the investigator added
information regarding the proportion of population individuals that benefit from
the SST treatment. The relevant MLEs are as follows:

µ̂D � �456, σ̂X � 268, σ̂Y � 257

The estimated standard deviation of treatment effects, σ̂D, ranges from a high of
524.8 down to 11.7 as ρXY varies from �1 to 1. Figure 1 shows the sensitivity of
σ̂D to varying ρXY along with large sample 95% confidence bands for σD. The
figure suggests that for most values of ρXY, there is some subject-treatment interac-
tion (i.e., σD � 0). But is it enough to indicate that some subset of the population
would be better off or at least as well off with only the traditional treatment rather
than the SST treatment?

The MLE for P� ranges from a high of 0.192 down to zero as ρXY varies
from �1 to 1. Figure 2 shows the MLE values for varying ρXY in addition to large
sample 95% confidence bands for P�. The lower confidence band suggests that
for most values of ρXY, there is insufficient evidence in the data to suggest that a
positive proportion of the population will experience an unfavorable effect due
to the SST treatment program. In fact, when ρXY exceeds 0.80, the upper confi-
dence limit for P� is less than 0.018 indicating that it is unlikely that an individual
would experience an unfavorable effect of the SST treatment.

On the other hand, if ρXY � �1, then a large sample 95% confidence interval
for P� is (0.061,0.324). Although ρXY � �1 is theoretically possible, in many
real applications one may believe that ρXY is actually closer to 1. In such cases,
the sensitivity can be restricted to a narrower range. In fact, when ρXY � 1, the
magnitude of σ 2

D depends on the difference between σX and σY, and these two
parameters can be estimated from observed data. Since, however, one will never
know if ρXY actually equals one, the sensitivity of σD to moderate values of ρXY

may be of interest.
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Figure 1. Sensitivity of estimated σD to varying ρXY � ρ for Example 1. The solid line is the
MLE for σD, and the dotted lines are 95% confidence bands.

Caution must be exercised when using the confidence bands with such small
data sets. The confidence bands rely on asymptotic normal theory of maximum
likelihood estimators, and they will be more accurate with much larger data sets.
Later, in Section 5, we present a bootstrap procedure as an alternative to the maxi-
mum likelihood method, and we illustrate it using these data. In the next section
we consider the role of a covariate when evaluating subject-treatment interaction
and its consequences.

4. THE ROLE OF A COVARIATE

Suppose now that a covariate, Z, is observable on all subjects in the sample.
As usual, the covariate is assumed to have been observed before application of
treatment, or to not be influenced by the treatment. We now seek to estimate P�

for any given subpopulation of subjects with a specified value of Z. We denote this
proportion as P�⋅Z and we assess its sensitivity to an inestimable partial correlation
parameter. Lower and upper bounds for the unconditional P� have been derived
(making use of covariate information) along with their corresponding MLEs and
were reported in an earlier work (7).
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Figure 2. Sensitivity of estimated P� to varying ρXY � ρ for Example 1. The solid line is the
MLE for P�, and the dotted lines are 95% confidence bands.

The population of potential observations may now be viewed as a trivariate
population, which we assume to be normal (possibly after suitable transforma-
tions), represented by the random vector (X, Y, Z). Let this random vector have
mean (µX, µY, µZ) t and variance matrix

� σ 2
X ρXYσXσY ρXZσXσZ

ρXYσXσY σ 2
Y ρYZσYσZ

ρXZσXσZ ρYZσYσZ σ 2
Z
� (6)

The parameters of this distribution, except ρXY, can be estimated from the marginal
distributions of X, Y, and Z, and from the bivariate distribution of (X, Z), and of
(Y, Z). The population linear regression functions relating the conditional means
of X and Y given Z � z0 are, respectively,

µX⋅Z�z0
� µX � βX(z0 � µZ)

µY⋅Z�z0
� µY � βY(z0 � µZ)

where βX � ρXZσX/σZ and βY � ρYZσY/σZ. There is no subject-treatment interac-
tion, i.e., σ 2

D � 0, if and only if the following three conditions are satisfied: (i)
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βX � βY, (ii) σX⋅Z � σY⋅Z, and (iii) ρXY⋅Z � 1, where σX⋅Z and σY⋅Z are conditional
standard deviations of X and Y, respectively, given Z and ρXY⋅Z is the partial correla-
tion of X and Y given Z. Proof of this assertion follows from the identity

σ 2
D � (σX⋅Z � σY⋅Z)2 � 2σX⋅ZσY⋅Z(1 � ρXY⋅Z) � (βX � βY)2 σ 2

Z (7)

Only conditions (i) and (ii) above can be tested using observable data.
If observed data provide evidence that βX ≠ βY, one might argue that this

information could be used to predict positive (or negative) treatment effects on
the basis of covariate values. What is actually predicted in such a case is the mean
treatment effect conditioned on a covariate value. For a given covariate value,
say Z � z0, there is a subpopulation of individual treatment effects for that given
value of Z that is normal with mean equal to µD⋅Z�Z0

and variance equal to
σ 2

D⋅Z�z0
� σ 2

D⋅Z where,

µD⋅Z�Z0
� µX � µY � (βX � βY)(z0 � µZ)

σ 2
D⋅Z � σ 2

X⋅Z � σ 2
Y⋅Z � 2σX⋅ZσY⋅ZρXY⋅Z

The partial correlation, ρXY⋅Z, cannot be estimated from observed data, but it must
lie in the interval (�1, 1).

Let (Xi, Z1i), i � 1, . . . , n1, be observable values of the test treatment variable
and the value of the covariate for the n1 subjects assigned to the treatment group.
Likewise, let (Yj, Z2j), j � 1, . . . , n2, be observable values for the n2 subjects
assigned to the control group. The likelihood function of observed data is of the
form

�
n1

i�1

f(xi, z1i) �
n2

j�1

f (yj, z2 j) (8)

For a given ρXY⋅Z, the MLE of σ 2
D⋅Z�z0

is given by

σ̂ 2
D⋅Z � σ̂ 2

X⋅Z � σ̂ 2
Y⋅Z � 2 σ̂X⋅Zσ̂Y⋅ZρXY⋅Z

with

σ̂ 2
X⋅Z � s 2

X⋅Z � s 2
X(1 � r 2

XZ), σ̂ 2
Y⋅Z � s 2

Y⋅Z � s 2
Y(1 � r 2

YZ)

where s 2
X and s 2

Y are given in Eq. (3), and rXZ and rYZ are the usual sample correla-
tion coefficients. The large sample distribution of σ̂ 2

D⋅Z is normal with mean
σ 2

D⋅Z and variance

Var(σ̂ 2
D⋅Z) � 2 �σ 2

X⋅Z

n1

(σX⋅Z � ρXY⋅ZσY⋅Z)2 �
σ 2

Y⋅Z

n2

(σY⋅Z � ρXY⋅ZσX⋅Z)2�
The MLE of µD⋅Z�z0

is µ̂D⋅Z � x � y � bX(z0 � z1) � bY(z0 � z2), where β̂X �
bX � sXrXZ/sZ1

, β̂Y � bY � sYrYZ/sZ2
, x and z1 are observed sample means of the

n1 individuals in the treatment group and similarly for y and z2, sZ1
is the sample

standard deviation of covariate values (divisor n1) for the n1 observations in the
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treatment group and similarly for sZ2
. The estimator µ̂D⋅Z is asymptotically normal

with mean µD⋅Z�z0
and variance

Var(µ̂D⋅z) � (σ 2
X⋅Z/n1 � σ 2

Y⋅Z/n2) �1 �
(z0 � µZ)2

σ 2
Z

�
The above equations can be derived using results in Lord (14) who provided MLEs
and large sample variances of the eight individual parameters in Eq. (8). The
derivation again uses properties of MLE’s and is similar to the derivation of results
from Section 3, shown in the Appendix.

Assuming, without loss of generality, that for a given z0, µD⋅Z�z0 � 0, then
the probability that an individual experiences a negative effect is P�⋅Z�z0 where

P�⋅Z�z0
� Φ(�µD⋅Z�z0

/σD⋅Z)

For a given ρXY⋅Z, the MLE of P�⋅Z�z0 is given by

P̂�⋅Z � Φ(�µ̂D⋅Z/σ̂D⋅Z)

which is asymptotically normal with mean P�⋅Z�z0
and variance

Var(P̂�⋅Z) �
(φ(�µD⋅Z/σD⋅Z))2

σ 2
D⋅Z

�Var(µ̂D⋅Z) �
µ 2

D⋅Z Var(σ̂ 2
D⋅Z)

4σ 4
D⋅Z

�
Results in this section are particularly useful when the slopes of the two

regression lines relating X and Z and relating Y and Z appear unequal. Sensitivity
of σ̂D⋅Z and of P̂�⋅Z at a given value of Z can be assessed for varying ρXY⋅Z. We
illustrate this using a well known small data set (15; page 552).

Example 2

Again, we use a small data set for illustration though results from these
methods will be more accurate for larger data sets. The example data are shown
in Table 2. A baseline seated systolic blood pressure, Z, was recorded for 21 male
subjects. The subjects were randomized into two groups so that 10 subjects re-
ceived a calcium supplement (the treatment), and the other 11 subjects received
a placebo. After a period of 12 weeks, the seated systolic blood pressure was
again recorded R, and a change from baseline C � R � Z was computed. The
experiment was double-blind.

Define a treatment indicator variable W that is equal to 1 for subjects receiv-
ing the calcium supplement and equal to zero otherwise. A linear model

C � β0 � β1W � β2Z � β3(Z � W) � ε

was fit to the data where ε is an error term assumed to be from a standard normal
distribution. The estimated coefficients from the model are
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Table 2. Blood Pressure Measurements

Subject Z R C

Treatment
1 107 100 �7
2 110 114 4
3 123 105 �18
4 129 112 �17
5 112 115 3
6 111 116 5
7 107 106 �1
8 112 102 �10
9 136 125 �11

10 102 104 2
Control

11 123 124 1
12 109 97 �12
13 112 113 1
14 102 105 3
15 98 95 �3
16 114 119 5
17 119 114 �5
18 112 114 2
19 110 121 11
20 117 118 1
21 130 133 3

Z is a baseline measure. R is the blood pressure
after 12 weeks. Changes from baseline are C �
R � Z.

(β̂0, β̂1, β̂2, β̂3) � (�8.002, 68.122, 0.076, �0.643)

Recall that the potential outcome variables are X and Y. The estimated model
relating mean change from baseline for subjects on the calcium treatment is µ̂X

� 60.120 � 0.567Z and the corresponding model for the placebo group is µ̂Y �
�8.002 � 0.076Z. The estimated mean treatment effect is expressed as µ̂D � µ̂X

� µ̂Y � 68.122 � 0.643Z, which implies that the estimated mean treatment effect
depends on the baseline blood pressure Z. A plot of the observed data and fitted
regression lines is shown in Figure 3. The figure shows that subjects on the calcium
treatment experience, on average, a greater decrease in blood pressure for larger
values of baseline blood pressure. There was little change in blood pressure for
subjects on the placebo. The treatment by baseline interaction is apparent from
the unequal slopes of the fitted regression lines for each group. The linear model
allows estimation of a mean treatment effect at any given value of Z, but it does
not provide any indication of individual variability of treatment effects at that
value of Z. We proceed with this example using the techniques in this section.
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Figure 3. Plot of changes from baseline versus baseline blood pressure for Example 2.

The standard deviation of treatment effects, σD⋅Z, does not depend on values
of Z (under normality). Figure 4 shows the sensitivity of estimated σD⋅Z to varying
partial correlation of X and Y given Z. The plot suggests that for most values of
ρXY⋅Z between �1 and 1 there is evidence of subject-treatment interaction, that is,
σD⋅Z � 0 in the subpopulations defined by given values of Z.

The average baseline blood pressure is z � 114. An estimated average treat-
ment effect, at z � 114, has point estimate µ̂D⋅Z�114 � �5.21 and a 95% confidence
interval (�11.61, 0.68). This suggests that calcium may be marginally effective,
on average, in reducing blood pressure of individuals with a baseline blood pres-
sure of 114 (a one tailed P-value testing an alternative Ha: µD⋅Z�114 � 0 is 0.039).
Figure 5 shows the sensitivity of estimated P�⋅Z to varying ρXY⋅Z between �1 and 1.
Based on this figure it appears that, if ρXY⋅Z is positive, the data do not suggest
that there is a positive proportion of the subpopulation at Z � 114 that would
experience an increase in blood pressure due to the calcium treatment. Yet the
upper confidence band indicates that the proportion could be high. For example,
if ρXY⋅Z � 0.5, P�⋅Z is between 0 and 0.42 with 95% confidence. The confidence
bands are wide due to the small sample size.

The mean treatment effect for a subpopulation with Z � 130 is estimated
to be in the interval (�25.06, �5.88) with 95% confidence. Furthermore, individu-
als with this high baseline blood pressure are also more likely to benefit from the
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Figure 4. Sensitivity of estimated σD⋅Z to varying ρXY⋅Z for Example 2. The solid line is the MLE
for σD⋅Z, and the dotted lines are 95% confidence bands.

calcium supplements. This is shown in Figure 6. If ρXY⋅Z � 0.5, then on this graph
P�⋅Z is between 0 and 0.02 with 95% confidence. Even in the worst case when
ρXY⋅Z � �1, the lower confidence limit for P�⋅Z is still zero. So Figure 6 provides
some indication that if a person’s blood pressure is high, then not only will the
population average blood pressure decrease, but most individuals will benefit as
well. This analysis can be repeated for any subpopulation of interest defined by
a value of Z.

A final note regarding this example is that as ρXZ and ρYZ approach 1, then
σD⋅Z goes to zero. This does not mean there is no subject-treatment interaction
present in the population, but it does mean that any subject-treatment interaction
can be explained by the covariate Z. This fact highlights the need to find covariates
that are good predictors of outcomes, and the sample correlation coefficients pro-
vide some indication of this predictive capability. In this example, ρ̂XZ � 0.602
and ρ̂YZ � 0.857.

5. AN APPROACH FOR SMALL SAMPLES

The methods described thus far entail normal distribution theory and large
sample confidence intervals. In situations when the distribution of data is unknown
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Figure 5. Sensitivity of estimated P�⋅Z evaluated at Z � z � 114 to varying ρXY⋅Z for Example 2.
The solid line is the MLE for P�⋅Z, and the dotted lines are 95% confidence bands.

or sample sizes are small (as in the examples we used), one could use a bootstrap
procedure. Details regarding the bootstrap can be found in Efron and Tibshirani
(16). We highlight the key points below in the context of a two sample design
without a covariate.

We assume that potential observations are, again, a random sample from a
larger bivariate population (not necessarily normal). After treatment assignment,
we observe n1 values in response to T and n2 in response to C.

For a given correlation, ρXY, the point estimator of σ 2
D is given by,

σ̂ 2
D � σ̂ 2

X � σ̂ 2
Y � 2σ̂Xσ̂YρXY

where, in this case, we use the unbiased estimators of variance. That is,

σ̂ 2
X � (1/(n1 � 1))�

n1

i�1

(xi � x)2

σ̂ 2
Y � (1/(n2 � 1)) �

n2

j�1

(yi � y)2
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Figure 6. Sensitivity of estimated P�⋅Z evaluated at Z � 130 to varying ρXY⋅Z for Example 2. The
solid line is the MLE for P�⋅Z, and the dotted lines are 95% confidence bands.

A bootstrap sample of the treatment group is drawn by resampling n1 observed
values with replacement from the actual n1 outcomes from treatment T. A boot-
strap sample of the control group is similarly obtained. Denote a bootstrap sample
from the test treatment group as (x*1 , x*2 , . . . , x*n1). The bootstrap estimate of
σ 2

X is given by

s*2
X �

n1

n1 � 1
(1/(n1 � 1))�

n1

i�1

(x*i � x*)2

where x* is the mean of the bootstrap sample. The usual sample variance of a
bootstrap sample will be biased low, and so the fraction (n1/(n1 � 1)) was included
to correct for this. Similarly

s*2
Y �

n2

n2 � 1
(1/(n2 � 1))�

n2

i�1

(y*i � y*)2

is the variance of the bootstrap sample from the control group. For a given ρXY,
a bootstrap estimate of σ 2

D is given by

σ̂*2
D � σ̂*2

X � σ̂*2
Y � 2σ̂*X σ̂*Y ρXY
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For each ρXY, B bootstrap samples can be drawn and a value of σ̂*2
D can be calcu-

lated. Let F *ρ be the bootstrap distribution of values of σ̂*2
D for a given ρXY. Boot-

strap (1 � α)100% confidence intervals for σ 2
D are the α/2 and 1 � α/2 quantiles

of F *ρ . These are percentile confidence intervals (16). When this is done for values
of ρXY in the interval (�1, 1) one obtains (1 � α)100% confidence bands for
σ 2

D. Since percentile intervals are transformation respecting, corresponding confi-
dence bands for σD can be computed using a square root transformation on the
values comprising the confidence bands for σ 2

D.
We used this method with the data in Table 1, and the results are shown in

Figure 7. Results are similar to those of Example 1 where MLEs were used. How-
ever, unlike the confidence bands for the MLE, the sample estimate of σD is not
always centered in the bootstrap confidence bands. This is not unusual for boot-
strap percentile confidence intervals. There are many other bootstrap methods for
obtaining confidence intervals, and their strengths and weaknesses depend on the
particular application (16).

Estimating P� would require either an assumed distribution for treatment
effects (as was made when using MLEs), or a method to bound probabilities such
as Chebyshev’s inequality, the latter being possibly too conservative for many
applications. To continue with the Example 1 data, recall that µD had a t-distribu-

Figure 7. Bootstrap 95% confidence bands (dotted lines) for σD for varying ρXY � ρ using data
in Table 1. The middle solid line is the sample point estimate given in Section 5.
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Figure 8. 90% ‘‘small sample’’ confidence bands (dotted lines) for P� for varying ρXY � ρ using
data in Table 1. The middle solid line is the MLE for P�.

tion based 95% confidence interval (�694, �218). Also, from above we have
95% bootstrap confidence bounds for σD at each value of ρXY. The two sets together
can provide conservative 90% confidence bands for P�. The result is shown in
Figure 8.

The confidence bands are wide but generally follow a similar pattern to Fig-
ure 2. One exception is that the lower bound is ‘‘range respecting’’ meaning that
the bound is never negative since the parameter it estimates (i.e., a probability)
is never negative (this was not true for the confidence bands given in Sections 3
and 4). A second difference is that the upper confidence band is larger than that
of Figure 2 as ρXY approaches one. This may reflect uncertainty due to the small
sample size and/or the conservative nature of the joint confidence region for µD

and σD since the joint region was assumed to be rectangular. The exact joint con-
fidence region will likely be more complex than a simple rectangle. This is a
subject for further research.

6. DISCUSSION

In this paper we presented methods to evaluate subject-treatment interaction
and its consequences using a two-sample randomized design, and we discussed
possible applications for the methods. Throughout, we have assumed no measure-
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ment errors and we have assumed treatment compliance. The role of measurement
errors and treatment compliance will be discussed in the future work.

We also noted that when the sample size is small, caution must be exercised
when interpreting the confidence bands obtained from maximum likelihood the-
ory. The bootstrap bounds may be more accurate in such cases. A subject for
further research is to compare confidence bands obtained using properties of maxi-
mum likelihood estimators with exact confidence bands using normal distribution
theory. The exact confidence bands may be obtained from simultaneous joint con-
fidence regions for σ 2

X, σ 2
Y, and µD. For a fixed ρXY, minimizing and maximizing

the expressions for σ 2
D and P� would produce confidence intervals for these param-

eters at that value of ρXY. Moreover, when a covariate is available, only the condi-
tional distributions of X given Z and of Y given Z would need to be assumed
normal. This is similar to an assumption made when conducting inference using
linear regression models.

Since the primary issue in estimating subject-treatment interaction has been
the fact that individual treatment effects cannot be observed at a single point in
time, a natural question arises about the use of crossover designs to circumvent
this issue. In such a design, subjects are randomly assigned to a ‘‘treatment se-
quence.’’ A subject receives both treatments at different points in time separated
by a washout period. So an individual subject’s outcome for each treatment can
be observed, and an ‘‘individual treatment effect’’ can be computed. In a two-
period crossover design, even if we can safely assume absence of carryover ef-
fects, there are four potential observations, (X ( j), Y ( j)) where j � 1, 2 denotes the
time period at which one would measure an observation. Only one of the two
pairs, (X (1), Y (2)) or (X (2), Y (1)), can be observed for an individual depending on
which sequence of treatments the individual received. Evaluating subject-treat-
ment interaction in various crossover designs is a subject for further research.
Some results for a two period balanced crossover design using potential outcomes
are in Gadbury (17).

Finally, conclusions based on the data alone may not be definitive enough
(usually due to small sample sizes involved in many studies) and this knowledge
is often combined with subject matter knowledge relevant to the particular applica-
tion. For example, the practical interpretation of an ‘‘unfavorable treatment ef-
fect’’ is disease/disorder specific. But results obtained from the methods reported
here can not only alert the practitioner to the possibility that treatment effects vary
widely from subject to subject in the population but also quantify the risk involved
by providing suitable confidence bounds. A final decision concerning the applica-
tion of the treatment to a subject must of course be based on the results of statistical
analyses together with any subject matter knowledge that may be available.

APPENDIX

Derivation of Eq. (4) is as follows. Since X and Y are only observable for
different subjects, any estimator computed from observed X will be independent



332 GADBURY, IYER, AND ALLISON

from one computed from observed Y. So σ̂ 2
X and σ̂ 2

Y are independent and asymptot-
ically normal with mean σ 2

X and σ 2
Y, respectively, and variance matrix

V � �
2
n1

σ 4
X 0

0
2
n2

σ 4
Y�

Define J � (J1, J2) where

J1 �
∂σ 2

D

∂σ 2
X

� 1 � ρXYσY/σX

J2�
∂σ 2

D

∂σ 2
Y

� 1 � ρXYσX/σY

Then, for a fixed ρXY, the asymptotic distribution of σ̂ 2
D is normal with mean

σ 2
D and variance computed by the matrix multiplication

Var(σ̂ 2
D) � J V J T

Derivation of Eq. (5) proceeds in a similar manner. The joint distribution of (µ̂D,
σ̂ 2

D)T is asymptotically normal with mean vector (µD, σ 2
D)T and variance matrix,

U � �Var(µ̂D) 0

0 Var(σ̂ 2
D)�

where Var(µ̂D) � σ 2
X/n1 � σ 2

Y/n2 and Var(σ̂ 2
D) is given in Eq. (4). Recall P� �

Φ(�µD/σD), and define M � (M1, M2) where

M1�
∂P�

∂µD

�
�φ(µD/σD)

σD

M2�
∂P�

∂σ 2
D

�
�φ(µD/σD)µD

2σ 3
D

Then the distribution of P̂� is asymptotically normal with mean P� and variance
computed by M U M T.
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